Presentamos la colección de modelos matemáticos de dinámica de enfermedades infecciosas
←
→
Transcripción del contenido de la página
Si su navegador no muestra la página correctamente, lea el contenido de la página a continuación
Presentamos la colección de modelos matemáticos de dinámica de enfermedades infecciosas blogs.plos.org / everyone / 2020/02/20 / Math -disease-dynamics / Editores de PLOS ONE 20 de febrero de 2020 En los últimos meses, las palabras "infección" y "brote" no han estado lejos de la mente de nadie ya que nos hemos enfrentado a la aparición de un nuevo coronavirus, COVID-19. En todo el mundo, se están realizando esfuerzos para controlar y limitar la propagación del virus, y para encontrar formas de tratar a los infectados. A medida que vemos cómo se desarrollan estos eventos, es evidente que todavía hay mucho que nosotros, como comunidad global, aún no comprendemos sobre la dinámica de las enfermedades infecciosas. Las formas en que se propagan las enfermedades son una preocupación de la que todos tenemos interés en ー la investigación que ayuda a nuestra comprensión de las enfermedades infecciosas puede influir en cada una de nuestras vidas. Una comunidad distinta de investigadores que trabajan para comprender la dinámica de las enfermedades infecciosas es la comunidad de modelos matemáticos, que consiste en científicos de muchas disciplinas diferentes que se unen para abordar un problema común mediante el uso de modelos matemáticos y simulaciones por computadora. Las matemáticas pueden sonar como un héroe poco probable que nos ayude a superar una epidemia mundial; sin embargo, no debemos subestimar las ideas que obtenemos al estudiar la dinámica de las enfermedades infecciosas mediante el uso de ecuaciones que describen variables fundamentales. Al abordar las enfermedades infecciosas desde una 1/8
perspectiva matemática, podemos identificar patrones y sistemas comunes en la función de la enfermedad, y nos permite encontrar algunas de las estructuras subyacentes que rigen los brotes y las epidemias. Hoy en PLOS, estamos lanzando una colección de nuevos trabajos de investigación enviados a una convocatoria de trabajos durante la segunda mitad de 2019 titulada "Modelado matemático de la dinámica de enfermedades infecciosas", organizada por PLOS Biology , PLOS Computational Biology y PLOS ONE. El objetivo de esta colección es reunir diferentes disciplinas como las matemáticas, la biología, la medicina y la física con el fin de arrojar luz sobre el importante tema de cómo los modelos matemáticos pueden ayudarnos a comprender la dinámica de las enfermedades infecciosas, y presentar esta investigación al amplio público. de estas tres revistas y más allá. La acumulación de nuevas investigaciones vitales en una colección integral será un recurso útil para comprender cómo operan las enfermedades infecciosas y cómo podemos abordarlas en tiempo real y en el futuro. En PLOS seguimos comprometidos con nuestra misión principal de Acceso Abierto ー asegurando que la ciencia esté lo más ampliamente disponible posible, y no bloqueada detrás de los muros de pago. Esto es especialmente importante en escenarios de brotes, como la actual epidemia de COVID-19, donde es fundamental que cualquier investigación nueva y relevante sea fácilmente accesible en todo el mundo, inmediatamente al momento de la publicación. Varios de los documentos de esta colección presentan nuevos métodos que pueden utilizarse en una variedad de escenarios. Por ejemplo, Patel y Sprouge desarrollaron un nuevo estimador para predecir el número básico de reproducción R 0 , que es el número esperado de células huésped infectadas por una sola célula infectada. Esto se puede utilizar, por ejemplo, para comprender las primeras etapas de las infecciones por VIH y para evaluar la efectividad de varias terapias. Nuevo coronavirus SARS-CoV-2 NIAID CC-BY Si dos especies patógenas, cepas o clones no interactúan, ¿podemos estimar la proporción de huéspedes coinfectados como el producto simple de las prevalencias individuales? Un artículo en PLOS Biology de Frédéric Hamelin, Nik Cunniffe y colaboradores muestra que esta suposición es falsa; incluso si los patógenos no interactúan, la muerte de los hospedadores coinfectados hace que las 2/8
prevalencias netas de patógenos individuales disminuyan simultáneamente. Los autores reinterpretan los datos de estudios previos en consecuencia. Los brotes de paperas inusualmente grandes en los Estados Unidos en 2016 y 2017 plantearon preguntas sobre el alcance de la circulación de las paperas y la relación entre estos y brotes anteriores. En este artículo de PLOS Biology , Shirlee Wohl, Pardis Sabeti y sus coautores combinaron datos epidemiológicos de investigaciones de salud pública con análisis de secuencias del genoma completo del virus de las paperas de 201 individuos infectados. Esto les permitió reconstruir enlaces de transmisión de paperas no evidentes a partir de enfoques más tradicionales y también reveló conexiones entre brotes de paperas aparentemente no relacionados. Endo y sus colegas presentan un modelo de un fenómeno con el que todos podemos relacionarnos, pero que aún no se comprende bien: la propagación de la infección dentro del hogar. Modelaron las finas estructuras de la vida familiar para comprender cómo las enfermedades típicamente ingresan y se propagan por el hogar. Sus hallazgos respaldan la idea de que los niños son los culpables más probables de llevar la enfermedad al hogar, y mostraron que existe un alto nivel de transmisión dentro de las generaciones, así como entre la madre y el niño. Rotavirus, the leading cause of diarrhea globally in children under 5, shows a biennial pattern of emergence in the US, while in many other high-income countries it exhibits an annual pattern. Ai and colleagues modelled the effect that higher vaccine coverage may have on this phenomenon, and found that increasing vaccine coverage from the current 70-75% to 85% would not only reduce the number of rotavirus cases, but also shift occurance to a more predictable annual epidemic pattern. Two of the papers published in the collection are concerned with malaria. Kim and colleagues modelled the effectiveness of FluShot NIAID CC-BY relapse control methods for Plasmodium vivax, finding that current vector control methods may have a negative effect on controlling disease prevalence, but that a shift towards control at a higher vector control level may be more efficient. Meanwhile, Wang and colleagues have constructed a stacking model for 3/8
malaria prediction by combining two traditional time series models and two deep learning methods. Utilising malaria incidence data from Yunnan Province, China, they find that the ensemble architecture outperforms each of the sub-structure models in predicting malaria cases. Predicted dengue importations for August 2015 pone.0225193 CC- BY There are two papers in the collection that look at improving prediction of dengue infections. Leibig and colleagues present a network model of how international air travel can affect the spread of dengue across the world. By modelling the number of dengue- infected passengers arriving at various airports each month, the authors were able to study how dengue may be imported into different countries, and which routes would be the most likely for dengue-infected passengers to arrive by. Secondly, Liu and colleagues developed a model for predicting the spread of dengue infections that incorporates climate factors such as mean temperature, relative humidity and precipitation and applied this to data from dengue infections in Guangzhou, China, in order to help inform best practices in the early stages of a dengue outbreak. The development of diseases can be influenced by personal factors such as age, which two of the papers in the collection address. Ku and Dodd developed a model for accounting for population aging when looking at tuberculosis incidence, as the impact of demographic change on disease forecasting is still not well understood. They applied the model to historical data of TB cases in Taiwan from 2005-2018, and used this to forecast what the incidence may look like until 2035. On the other end of the age spectrum, Rostgaard and colleagues used a Markov model to study the relationship between Epstein-Barr virus and infectious mononucleosis. Most people are typically infected with Epstein-Barr virus in early childhood, while infectious mononucleosis can sometimes follow in adolescence or later in life. The authors developed a statistical model to probe some of the uncertainties surrounding the origin and dynamics of infectious mononucleosis. 4/8
Some of the papers in the collection address new and emerging diseases. Dodero-Rojas and colleagues used the SEIR model to study the last three Chikungunya outbreaks in Rio de Janeiro, Brazil, and estimated their respective Basic Reproduction Numbers, R0. They also expanded their findings to include predictions for the Mayaro virus, which is an emerging disease in South America, and found that it has the possibility to become an epidemic disease in Rio de Janeiro. Aedes Mosquito NIAID CC-BY The ability to accurately forecast disease patterns is crucial for ensuring that the right resources are in place to handle outbreaks. Morbey and colleagues looked at seasonal patterns in respiratory disease in England, and found that although syndromic indicators were affected by the timing of the peaks in seasonal disease, the demand for hospital beds was the highest on either 29th or 30th December, regardless of the timing of the syndromic peaks. Asadgol and colleagues also addressed seasonal patterns, this time in cholera in Iran, and predicted the effect of climate change on cholera incidence from 2020-2050 using an artificial neural network. Given the interdisciplinary nature of the topic, we are grateful to countless authors, reviewers, Academic Editors and Guest Editors for making this collection a reality. We are especially grateful to our Guest Editor team, Konstantin Blyuss (University of Sussex), Sara Del Valle (Los Alamos National Laboratory), Jennifer Flegg (University of Melbourne), Louise Matthews (University of Glasgow) and Jane Heffernan (York University) for curating the collection. While 14 papers are included in this collection today, we’ll keep adding new papers as they are published, so please keep checking back for updates. Guest Editor Konstantin Blyuss sums up the importance of this collection: “A recent and ongoing outbreak of coronavirus COVID-19 has highlighted the enormous significance of mathematical models for understanding the dynamics of infectious diseases and developing appropriate strategies for mitigating them. Mathematical models have helped identify the 5/8
important factors affecting the spread of this infection both globally, and locally using country-specific information. They have also elucidated the effectiveness of different containment strategies and provided quantitative measures of disease severity”. About the Guest Editors: Konstantin Blyuss Guest Editor, PLOS ONE, PLOS Biology, and PLOS Computational Biology Konstantin Blyuss is a Reader in the Department of Mathematics at the University of Sussex, UK. He obtained his PhD in applied mathematics at the University of Surrey, which was followed by PostDocs at Universities of Exeter and Oxford. Before coming to Sussex in 2010, he was a Lecturer in Complexity at the University of Bristol. His main research interests are in the area of dynamical systems applied to biology, with particular interest in modelling various aspects of epidemiology, dynamics of immune responses and autoimmunity, as well as understanding mechanisms of interactions between plants and their pathogens Sara del Valle Guest Editor, PLOS ONE, PLOS Biology, and PLOS Computational Biology Dr. Sara Del Valle is a scientist and deputy group leader in the Information Systems and Modeling Group at Los Alamos National Laboratory. She earned her Ph.D. in Applied Mathematics and Computational Science in 2005 from the University of Iowa. She works on developing, integrating, and analyzing mathematical, computational, and statistical models for the spread of infectious diseases such as smallpox, anthrax, HIV, influenza, malaria, Zika, Chikungunya, dengue, and Ebola. Most recently, she has been investigating the role of heterogeneous data streams such as satellite imagery, Internet data, and climate on detecting, monitoring, and forecasting diseases around the globe. Her research has generated new insights on the impact of behavioral changes on diseases spread as well as the role of non-traditional data streams on disease forecasting. Jennifer Flegg 6/8
Jennifer Flegg Guest Editor, PLOS ONE, PLOS Biology, and PLOS Computational Biology Jennifer Flegg is a Senior Lecturer and DECRA fellow in the School of Mathematics and Statistics at the University of Melbourne. Her research focuses on mathematical biology in areas such as wound healing, tumour growth and epidemiology. She was awarded a PhD in 2009 from Queensland University of Technology on mathematical modelling of tissue repair. From 2010 – 2013, she was at the University of Oxford developing statistical models for the spread of resistance to antimalarial drugs. From 2014 – April 2017 she was a Lecturer in the School of Mathematical Sciences at Monash University. In May 2017 she joined the School of Mathematics and Statistics at the University of Melbourne as a Senior Lecturer in Applied Mathematics. Louise Matthews Guest Editor, PLOS ONE, PLOS Biology, and PLOS Computational Biology Louise Matthews is Professor of Mathematical Biology and Infectious Disease Ecology at the Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM) at the University of Glasgow. She holds a degree and PhD in mathematics and has over 20 years research experience as an epidemiologist, with a particular focus on diseases of veterinary and zoonotic importance. Her current interests include a focus on drug resistance; antibiotic resistance in livestock; the community and the healthcare setting; anthelminthic resistance in livestock; and drug resistance in African Animal Trypanosomiasis. She is also interested in the integration of economic and epidemiological approaches such as game theory to understand farmer behaviour and micro-costing approaches to promote adoption of measures to reduce antibiotic resistance. Jane Heffernan Guest Editor, PLOS ONE, PLOS Biology, and PLOS Computational Biology Jane Heffernan is a Professor in the Department of Mathematics and Statistics at York University, and York Research Chair (Tier II). She is also the Director of the Centre for Disease Modelling (CDM), and serves on the Board of Directors of the Canadian Applied and Industrial Mathematics Society (CAIMS). She is also very active in the Society for Mathematical Biology (SMB). Dr. Heffernan’s research program centers on understanding 7/8
the spread and persistence of infectious diseases. Her Modelling Infection and Immunity Lab focuses on the development of new biologically motivated models of infectious diseases (deterministic and stochastic) that describe pathogen dynamics in-host (mathematical immunology) and in a population of hosts (mathematical epidemiology), as well as models in immuno-epidemiology, which integrate the in-host dynamics with population level models. More recently, Heffernan is focusing on applying mathematics and modelling to studying pollinator health and disease biology. Imagen destacada: Spencer J. Fox, CC0 8/8
También puede leer